Towards a general and unified characterization of individual and collective choice functions under fuzzy and nonfuzzy preferences and majority via the ordered weighted average operators

نویسندگان

  • Janusz Kacprzyk
  • Slawomir Zadrozny
چکیده

A fuzzy preference relation is a powerful and popular model to represent both individual and group preferences and can be a basis for decision-making models that in general provide as a result a subset of alternatives that can constitute an ultimate solution of a decision problem. To arrive at such a Þnal solution individual and/or group choice rules may be employed. There is a wealth of such rules devised in the context of the classical, crisp preference relations. Originally, most of the popular group decision-making rules were conceived for classical (crisp) preference relations (orderings) and then extended to the traditional fuzzy preference relations. In this paper we pursue the path towards a universal representation of such choice rules that can provide an effective generalization—for the case of fuzzy preference relations—of the classical choice rules. C © 2008 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triangular Intuitionistic Fuzzy Triple Bonferroni Harmonic Mean Operators and Application to Multi-attribute Group Decision Making

As an special intuitionistic fuzzy set defined on the real number set, triangular intuitionistic fuzzy number (TIFN) is a fundamental tool for quantifying an ill-known quantity. In order to model the decision maker's overall preference with mandatory requirements, it is necessary to develop some Bonferroni harmonic mean operators for TIFNs which can be used to effectively intergrate the informa...

متن کامل

Hesitant q-rung orthopair fuzzy aggregation operators with their applications in multi-criteria decision making

The aim of this manuscript is to present a new concept of hesitant q-rung orthopair fuzzy sets (Hq-ROFSs) by combining the concept of the q-ROFSs as well as Hesitant fuzzy sets. The proposed concept is the generalization of the fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets, and Pythagorean fuzzy sets as well as intuitionistic hesitant fuzzy sets (IHFSs) and hesitant Pythagorean fuz...

متن کامل

Extended and infinite ordered weighted averaging and sum operators with numerical examples

This study discusses some variants of Ordered WeightedAveraging (OWA) operators and related information aggregation methods. Indetail, we define the Extended Ordered Weighted Sum (EOWS) operator and theExtended Ordered Weighted Averaging (EOWA) operator, which are applied inscientometrics evaluation where the preference is over finitely manyrepresentative works. As...

متن کامل

Hesitant Fuzzy Linguistic Arithmetic Aggregation Operators in Multiple Attribute Decision Making

In this paper, we investigate the multiple attribute decision making (MADM) problem based on the arithmetic and geometric aggregation operators with hesitant fuzzy linguistic information. Then, motivated by the idea of traditional arithmetic operation, we have developed some aggregation operators for aggregating hesitant fuzzy linguistic information: hesitant fuzzy linguistic weighted average (...

متن کامل

Power harmonic aggregation operator with trapezoidal intuitionistic fuzzy numbers for solving MAGDM problems

Trapezoidal intuitionistic fuzzy numbers (TrIFNs) express abundant and flexible information in a suitable manner and  are very useful to depict the decision information in the procedure of decision making. In this paper, some new aggregation operators, such as, trapezoidal intuitionistic fuzzy weighted power harmonic mean (TrIFWPHM) operator, trapezoidal intuitionistic fuzzy ordered weighted po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Intell. Syst.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2009